

SeaPad

Smart Contract

Audit Report

07/24/2023

1

SeaPad Smart Contract Audit Report

The following are the SHA1 hashes of the last reviewed files.

1 Executive Summary

1.1 Project Information

1.2 Files in Scope

Description A decentralized launchpad on Sui

Type Launchpad

Auditors MoveBit

Timeline July 6, 2023 - July 21, 2023

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/seapad-fund/sui-

contracts/tree/mainnet/vesting/sources

Commits 4d13c702821251230ae115ce6229d5904ec1cfdd

d4a37da96f7a9d468538ae8fddc3762421988f08

ID Files SHA-1 Hash

TML sui-contracts/vesting/Move.toml e0c0c836544fb2a3d2d9928cc6b9fef346499fb

5

MoveBit

https://github.com/seapad-fund/sui-contracts/tree/mainnet/vesting/sources

2

MoveBit aims to assess repositories for security-related issues, code quality, and compliance

with specifications and best practices. Possible issues our team looked for included (but are not

limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

1.3 Issue Statistic

1.4 MoveBit Audit BreakDown

●

●

●

●

●

●

●

●

VER sui-

contracts/vesting/sources/versio

n.move

d5c31f42f8d5338327c275572f51edc3166dc518

VES sui-

contracts/vesting/sources/vestin

g.move

dea615ba5e7e504d1fe9856f1e412a3bef7357a7

Item Count Fixed Acknowledged

Total 11 10 1

Informational 2 2

Minor 2 2

Medium 3 3

Major 4 3 1

Critical

MoveBit

3

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

The security team adopted the "Testing and Automated Analysis", "Code Review" and

"Formal Verification" strategy to perform a complete security test on the code in a way

that is closest to the real attack. The main entrance and scope of security testing are

stated in the conventions in the "Audit Objective", which can expand to contexts beyond

the scope according to the actual testing needs. The main types of this security audit

include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /

parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner in

time. The code owners should actively cooperate (this might include providing the latest

stable source code, relevant deployment scripts or methods, transaction signature scripts,

exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both the

audit team and the code owner in a timely manner.

●

●

●

●

●

●

1.5 Methodology

●

●

●

MoveBit

4

This report has been commissioned by Seapad to identify any potential issues and vulnerabilities

in the source code of the Seapad Vesting smart contract, as well as any contract dependencies

that were not part of an officially recognized library. In this audit, we have utilized various

techniques, including manual code review and static analysis, to identify potential vulnerabilities

and security issues.

During the audit, we have identified 11 issues of varying severity, listed below.

2 Summary

ID Title Severity Status

VES-01 Missing Deprecated Check During Fund

Addition

Major Fixed

VES-02 Single-step Ownership Transfer can be

Dangerous

Medium Fixed

VES-03 The Value of token_fund.percent is not

Updated

Medium Fixed

VES-04 Assertion is Unnecessary Minor Fixed

VES-05 Consolidating Redundant Table Access Minor Fixed

VES-06 Unremoved Entries After Claiming All Locked

Tokens

Major Fixed

VES-07 The project.deposited is not Updated

When Claiming Tokens

Major Fixed

VES-08 Possible Zero Percent in addFund()
Function

Medium Fixed

VES-09 Centralization Risk Major Acknowledged

VES-10 Unused Error Code ERR_CONFIRMED_ADMINC
AP

Information

al

Fixed

VES-11 value_fund > 0 Check is Duplicated in ad
dFunds

Information

al

Fixed

MoveBit

5

Here  are  the  relevant  actors   with  their  respective   abilities within the   SeaPad Vesting Smart 
Contract ：

 Admin

Admin can change Admin through changeAdmin

Admin can create new projects through createProject

Admin can set if the project is deprecated by setDeprecated

Admin can set the project fee by setProjectFee

Admin can withdraw all the project fee by withdrawFee

Admin can add a single fund by addFund

Admin can add multiple funds by addFunds

Admin can remove fund by removeFund

User

User can claim their locked funds from a project by claim

Severity: Major

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L221-L240

Descriptions:

This function, setDeprecated() , is a public entry function that allows the administrator,

represented by the _admin parameter, to set the deprecation status of a Project object.

3 Participant Process

●

●

●

●

●

●

●

●

●

4 Findings

VES-01 Missing Deprecated Check During Fund Addition in the

Protocol

MoveBit

6

In the protocol, when adding funds, there is no check performed on the deprecated status

of the project. This means that funds can be added to a project without considering

whether the project has been marked as deprecated or not. This can lead to potential

issues, as funds may be inadvertently added to projects that are no longer actively

supported or recommended.

Suggestion: It is important to implement proper checks and validations during the fund

addition process to ensure that deprecated projects are not able to receive new funds.

This helps maintain consistency and aligns with the intended deprecation status of the

projects in the protocol.

public entry fun changeAdmin(admin: VAdminCap, to: address, version: &mut V
ersion) {
 checkVersion(version, VERSION);
 transfer(admin, to);
}

1

2
3
4
5

public entry fun addFunds<COIN>(admin: &VAdminCap,
 owners: vector<address>,
 values: vector<u64>,
 totalFund: Coin<COIN>,
 project: &mut Project<COIN>,
 registry: &mut ProjectRegistry,
 version: &Version,
 ctx: &mut TxContext) {
 let (i, n) = (0, vector::length(&owners));
 assert!(vector::length(&values) == n, ERR_BAD_FUND_PARAMS);
 while (i < n) {
 let owner = *vector::borrow(&owners, i);
 let value_fund = *vector::borrow(&values, i);
 assert!(value_fund > 0, ERR_BAD_FUND_PARAMS);
 let fund = coin::split(&mut totalFund, value_fund, ctx);
 addFund(admin, owner, fund, project, registry, version);
 i = i + 1;
 };
 transfer::public_transfer(totalFund, sender(ctx));
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

MoveBit

7

Resolution: Added the code assert!(!project.deprecated, ERR_BDEPRECATED) to

check if the project has been deprecated.

Severity: Medium

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L117-L120

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when

transferring ownership or admin rights it can mean that role is lost forever. If the admin

permissions are given to the wrong address within this function, it will cause irreparable

damage to the contract.

Suggestion: It is a best practice to use a two-step ownership transfer pattern, meaning

ownership transfer gets to a "pending" state and the new owner should claim his new

rights, otherwise the old owner still has control of the contract.

Resolution: Two-step ownership transfer applied.

Severity: Medium

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L328-L367

Descriptions:

When funds are added to an existing owner's entry in the project.funds table, the to
ken_fund.percent is incremented by the percentage of the added funds relative to the

VES-02 Single-step Ownership Transfer Can be Dangerous

VES-03 The Value of token_fund.percent is not Updated

public entry fun changeAdmin(admin: VAdminCap, to: address, version: &mut V
ersion) {
 checkVersion(version, VERSION);
 transfer(admin, to);
}

1

2
3
4
5

MoveBit

8

project's total supply. However, there is no corresponding logic to update or adjust this

value during the claim process.

This means that if funds are added multiple times for the same owner, the

token_fund.percent will accumulate the percentages of all the added funds without

considering any changes or claims made on the funds. As a result, the token_fund.perc
ent value will be inaccurate and may not reflect the actual percentage of funds owned by

the owner.

MoveBit

9

Suggestion: Appropriate logic should be implemented to update the token_fund.percent

value during the claim process or any other relevant operations to reflect the correct

percentage of funds owned by the owner. This ensures that the token_fund.percent

remains accurate and aligned with the actual ownership of funds within the project.

Resolution: Remove the token_fund.percent feature.

public entry fun claim<COIN>(fee: &mut Coin<SUI>,
project: &mut Project<COIN>,
sclock: &Clock,
version: &Version,
ctx: &mut TxContext) {
 checkVersion(version, VERSION);
 assert!(coin::value(fee) >= project.fee, ERR_FEE_NOT_ENOUGH);
 let now_ms = clock::timestamp_ms(sclock);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);
 let sender_addr = sender(ctx);
 assert!(table::contains(&project.funds, sender_addr), ERR_NO_FUND);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);
 let fund0 = table::borrow(&mut project.funds, sender_addr);
 assert!(sender_addr == fund0.owner, ERR_NO_PERMISSION);
 let claim_percent = computeClaimPercent<COIN>(project, now_ms);
 assert!(claim_percent > 0, ERR_NO_FUND);
 let fund = table::borrow_mut(&mut project.funds, sender_addr);
 let claim_total = (fund.total * claim_percent) / ONE_HUNDRED_PERCENT_S
CALED;
 let claim = claim_total - fund.released;
 assert!(claim > 0, ERR_NO_FUND);
 transfer::public_transfer(coin::split<COIN>(&mut fund.locked, claim, c
tx), sender_addr);
 fund.released = fund.released + claim;
 fund.last_claim_ms = now_ms;
 coin::join(&mut project.feeTreasury, coin::split(fee, project.fee, ctx
));
 emit(FundClaimEvent {
 owner: fund.owner,
 total: fund.total,
 released: fund.released,
 claim,
 project: id_address(project),
 })
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29
30
31
32

MoveBit

10

Severity: Minor

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L341

Descriptions:

The line 14 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED) in the

code below is redundant.

The purpose of this assertion is to verify that the current timestamp (now_ms) is greater

than or equal to the TGE (Token Generation Event) start time of the project

(project.tge_ms). However, this check is already performed earlier in the code, right after

retrieving the current timestamp. Therefore, this second assertion serves no additional

purpose and can be safely removed without affecting the functionality of the function.

VES-04 The Assertion assert!(now_ms >= project.tge_ms, ERR_
TGE_NOT_STARTED) in the Code is Unnecessary

MoveBit

11

Suggestion: Remove the line 14 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_
STARTED) from the code.

Resolution: Duplicate check removed.

Severity: Minor

VES-05 Consolidating Redundant Table Access

public entry fun claim<COIN>(fee: &mut Coin<SUI>,
 project: &mut Project<COIN>,
 sclock: &Clock,
 version: &Version,
 ctx: &mut TxContext) {
 checkVersion(version, VERSION);
 assert!(coin::value(fee) >= project.fee, ERR_FEE_NOT_ENOUGH);
 let now_ms = clock::timestamp_ms(sclock);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);
 let sender_addr = sender(ctx);
 assert!(table::contains(&project.funds, sender_addr), ERR_NO_FUND);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);
 let fund0 = table::borrow(&mut project.funds, sender_addr);
 assert!(sender_addr == fund0.owner, ERR_NO_PERMISSION);
 let claim_percent = computeClaimPercent<COIN>(project, now_ms);
 assert!(claim_percent > 0, ERR_NO_FUND);
 let fund = table::borrow_mut(&mut project.funds, sender_addr);
 let claim_total = (fund.total * claim_percent) / ONE_HUNDRED_PERCENT_S
CALED;
 let claim = claim_total - fund.released;
 assert!(claim > 0, ERR_NO_FUND);
 transfer::public_transfer(coin::split<COIN>(&mut fund.locked, claim, c
tx), sender_addr);
 fund.released = fund.released + claim;
 fund.last_claim_ms = now_ms;
 coin::join(&mut project.feeTreasury, coin::split(fee, project.fee, ctx
));
 emit(FundClaimEvent {
 owner: fund.owner,
 total: fund.total,
 released: fund.released,
 claim,
 project: id_address(project),
 })
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29
30
31
32

MoveBit

12

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L343-L349

Descriptions: The code could be optimized by merging the two references to table::bor
row(&mut project.funds, sender_addr) into a single occurrence. Currently, the

code makes two separate calls to retrieve the same value from the project.funds
table, which is inefficient. By consolidating these references into a single call, the code can

improve performance and reduce redundant code execution.

MoveBit

13

Suggestion: It is recommended to modify it like this

public entry fun claim<COIN>(fee: &mut Coin<SUI>,
project: &mut Project<COIN>,
sclock: &Clock,
version: &Version,
ctx: &mut TxContext) {
 checkVersion(version, VERSION);
 assert!(coin::value(fee) >= project.fee, ERR_FEE_NOT_ENOUGH);
 let now_ms = clock::timestamp_ms(sclock);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);
 let sender_addr = sender(ctx);
 assert!(table::contains(&project.funds, sender_addr), ERR_NO_FUND);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);
 let fund0 = table::borrow(&mut project.funds, sender_addr);
 assert!(sender_addr == fund0.owner, ERR_NO_PERMISSION);
 let claim_percent = computeClaimPercent<COIN>(project, now_ms);
 assert!(claim_percent > 0, ERR_NO_FUND);
 let fund = table::borrow_mut(&mut project.funds, sender_addr);
 let claim_total = (fund.total * claim_percent) / ONE_HUNDRED_PERCENT_S
CALED;
 let claim = claim_total - fund.released;
 assert!(claim > 0, ERR_NO_FUND);
 transfer::public_transfer(coin::split<COIN>(&mut fund.locked, claim, c
tx), sender_addr);
 fund.released = fund.released + claim;
 fund.last_claim_ms = now_ms;
 coin::join(&mut project.feeTreasury, coin::split(fee, project.fee, ctx
));
 emit(FundClaimEvent {
 owner: fund.owner,
 total: fund.total,
 released: fund.released,
 claim,
 project: id_address(project),
 })
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29
30
31
32
33

MoveBit

14

Resolution: The developers have fixed this issue based on our recommendation.

Severity: Major

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L384-L425

Descriptions: The claim() function is used to claim a certain amount of tokens in a project. If

user claims all of the locked amount but the protocol does not remove the user's entry from the

table with table::remove(&mut registry.user_projects, owner) , it could lead to

potential issues.

One such issue is that the user's entry would still exist in the table, even though they have

claimed all their tokens. This could lead to confusion or incorrect assumptions when querying the

table for data, as it might appear that the user still has tokens to claim, even though they do not.

VES-06 Unremoved Entries After Claiming All Locked Tokens

let claim_percent = computeClaimPercent<COIN>(project, now_ms);
assert!(claim_percent > 0, ERR_NO_FUND);

let fund = table::borrow_mut(&mut project.funds, sender_addr);
assert!(sender_addr == fund.owner, ERR_NO_PERMISSION);

1
2
3
4
5

MoveBit

15

public entry fun claim<COIN>(fee: Coin<SUI>,
 project: &mut Project<COIN>,
 sclock: &Clock,
 version: &Version,
 ctx: &mut TxContext) {
 checkVersion(version, VERSION);
 assert!(coin::value(&fee) >= project.fee, ERR_FEE_NOT_ENOUGH);
 let now_ms = clock::timestamp_ms(sclock);
 assert!(now_ms >= project.tge_ms, ERR_TGE_NOT_STARTED);

 let sender_addr = sender(ctx);
 assert!(table::contains(&project.funds, sender_addr), ERR_NO_FUND);

 let claim_percent = computeClaimPercent<COIN>(project, now_ms);
 assert!(claim_percent > 0, ERR_NO_FUND);

 let token_fund = table::borrow_mut(&mut project.funds, sender_addr);
 assert!(sender_addr == token_fund.owner, ERR_NO_PERMISSION);

 let claim_total = (token_fund.total * claim_percent) / ONE_HUNDRED_PER
CENT_SCALED;
 let claimed_amount = claim_total - token_fund.released;
 assert!(claimed_amount > 0, ERR_NO_FUND);

 let percent = claimed_amount * ONE_HUNDRED_PERCENT_SCALED / project.su
pply;
 token_fund.percent = token_fund.percent - percent;

 transfer::public_transfer(coin::split<COIN>(&mut token_fund.locked, cl
aimed_amount, ctx), sender_addr);
 token_fund.released = token_fund.released + claimed_amount;
 token_fund.last_claim_ms = now_ms;

 let takeFee = coin::split(&mut fee, project.fee, ctx);
 coin::join(&mut project.feeTreasury, takeFee);
 transfer::public_transfer(fee, sender(ctx));

 emit(FundClaimEvent {
 owner: token_fund.owner,
 total: token_fund.total,
 released: token_fund.released,
 claim: claimed_amount,
 project: id_address(project),
 })
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

MoveBit

16

Suggestion: It would be advisable to add a check after the tokens are claimed and if the

locked amount is zero, then remove the user's entry from the table.

Resolution: Clear user from table if user claim all token.

Severity: Major

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L377-L432

Descriptions: This function does not update project.deposited when a user claims their

tokens. if admin removes funds with a removeFund operation and project.deposited_per
cent is calculated based on the project.deposited , it leads to incorrect calculations

because project.deposited isn't being updated correctly in the claim function.

Suggestion: Update the project.deposited value after claiming tokens

Resolution: project.deposited has been updated.

VES-07 The project.deposited is not Updated When Claiming

Tokens

VES-08 Possible Zero Percent in addFund() Function

let claim_total = (token_fund.total * claim_percent) / ONE_HUNDRED_PERCENT
_SCALED;
let claimed_amount = claim_total - token_fund.released;
assert!(claimed_amount > 0, ERR_NO_FUND);

let percent = claimed_amount * ONE_HUNDRED_PERCENT_SCALED / project.supply
;
token_fund.percent = token_fund.percent - percent;

transfer::public_transfer(coin::split<COIN>(&mut token_fund.locked, claime
d_amount, ctx), sender_addr);
token_fund.released = token_fund.released + claimed_amount;
token_fund.last_claim_ms = now_ms;

let takeFee = coin::split(&mut fee, project.fee, ctx);
coin::join(&mut project.feeTreasury, takeFee);
transfer::public_transfer(fee, sender(ctx));

1

2
3
4
5

6
7
8

9
10
11
12
13
14

MoveBit

17

Severity: Medium

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L315

Descriptions: In the function addFund() , there's a line of code that calculates the percent of

the total supply that the new funds (fund_amt) represent:

This formula takes the amount of funds being added, scales it up by

ONE_HUNDRED_PERCENT_SCALED (likely a large constant for scaling purposes), and then

divides it by the total supply of the project.

The issue you're referring to arises when the fund_amt is very small relative to project.sup
ply . In such cases, when fund_amt * ONE_HUNDRED_PERCENT_SCALED is divided by proj
ect.supply , the result may be rounded down to zero due to the way integer division works in

many programming languages. This can happen even if fund_amt is not exactly zero, just very

small compared to project.supply .

Suggestion: Assert when percent is 0:

assert!(percent > 0, "Zero percent");

Resolution: Removed the token_fund.percent feature.

Severity: Major

Status: Acknowledged

Descriptions: There are some centralization risks in the contract:

Admin can change Admin through changeAdmin

Admin can create new projects through createProject

Admin can set if the project is deprecated by setDeprecated

Admin can set the project fee by setProjectFee

Admin can withdraw all the project fee by withdrawFee

Admin can add a single fund by addFund

VES-09 Centralization Risk

●

●

●

●

●

●

let percent = fund_amt * ONE_HUNDRED_PERCENT_SCALED / project.supply;

1
2

MoveBit

18

Admin can add multiple funds by addFunds

Admin can remove fund by removeFund

Suggestion: It is recommended that multi-signature accounts should be set as privileged

accounts.

Severity: Informational

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L38

Descriptions: Error code ERR_CONFIRMED_ADMINCAP is not used anywhere.

Suggestion: Consider removing it if it's unused.

Resolution: Removed useless code.

Severity: Informational

Status: Fixed

Code Location: sui-contracts/vesting/sources/version.move#L286-307

Descriptions: In the addFunds function, there is a check to make sure value_fund is greater

than 0 in the while loop. We think it's unnecessary since in each iteration it will call

addFund function, and it already contains the same check.

●

●

VES-10 Unused Error Code ERR_CONFIRMED_ADMINCAP

VES-11 value_fund > 0 Check is Duplicated in addFunds

const ERR_CONFIRMED_ADMINCAP: u64 = 8010;1

assert!(value_fund > 0, ERR_BAD_FUND_PARAMS);
let fund = coin::split(&mut totalFund, value_fund, ctx);
addFund(admin, owner, fund, project, registry, version);

1
2
3

MoveBit

19

Suggestion: Consider removing the duplicate test in addFunds .

Resolution: Removed the duplicate check.

Informational: Informational items are often recommendations to improve the style of the

code or to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They don't

post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They should be

fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive information at

risk, and often are not directly exploitable. All major issues should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Fixed: The issue has been resolved.

Appendix 1

Issue Level
●

●

●

●

●

Issue Status
●

public entry fun addFund<COIN>(_admin: &AdminCap,
 owner: address,
 fund: Coin<COIN>,
 project: &mut Project<COIN>,
 registry: &mut ProjectRegistry,
 version: &Version)
{
 checkVersion(version, VERSION);

 assert!(!project.deprecated, ERR_BDEPRECATED);

 let fund_amt = coin::value(&fund);
 assert!(fund_amt > 0, ERR_BAD_FUND_PARAMS);

1
2
3
4
5
6
7
8
9
10
11
12
13

MoveBit

20

Acknowledged: The issue has been acknowledged by the code owner, and the code owner

confirms it's as designed, and decides to keep it.

This report is based on the scope of materials and documents provided, with a limited review at

the time provided. Results may not be complete and do not include all vulnerabilities. The review

and this report are provided on an as-is, where-is, and as-available basis. You agree that your

access and/or use, including but not limited to any associated services, products, protocols,

platforms, content, and materials, will be at your own risk. A report does not imply an

endorsement of any particular project or team, nor does it guarantee its security. These reports

should not be relied upon in any way by any third party, including for the purpose of making any

decision to buy or sell products, services, or any other assets. TO THE FULLEST EXTENT

PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN

CONNECTION WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS, AND

YOUR USE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

●

Appendix 2

Disclaimer

MoveBit

