\ MOVEBIT
(J\ Securing the Move Ecosystem

Transit Finance
Audit Report

’ https://twitter.com/movebit_

contact@movebit.xyz



Transit Finance Audit
Report

@ swap S\ MOVEBIT

1 Executive Summary

1.1 Project Information

Type Swap Aggregator

Auditors MoveBit

Timeline 2022-11-28 to 2022-12-7

Languages Move

Methods Architecture Review, Unit Testing, Formal Verification, Manual Review
Source Code Repository: https://github.com/Transit-Finance/transit-aptos-core-v1

Last Reviewed Commit: 93330d22441e583b7d349480120af1d6fa28ae2b

1.2 Issue Statistic

Item Count Fixed Pending
Total 7 6 1

Minor 1 1

Medium 6 5 1

Major

Critical

1.3 Issue Level

1/16



« Minor issues are general suggestions relevant to best practices and readability. They don't
post any direct risk. Developers are encouraged to fix them.

« Medium issues are non-exploitable problems and not security vulnerabilities. They should
be fixed unless there is a specific reason not to.

« Major issues are security vulnerabilities. They put a portion of users' sensitive information at

risk, and often are not directly exploitable. All major issues should be fixed.

« Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

1.4 Issue Status

» Fixed: The issue has been resolved.

+ Pending: The issue has been acknowledged by the code owner, but has not yet been

resolved. The code owner may take action to fix it in the future.

2 Summary of Findings

Transit Finance is a cross-chain swap platform that integrates DEXs, aggregate transactions, and
one-stop cross-chain. Without certification, users can complete decentralized transactions in
real-time and instantly swap assets across networks supported by Transit Finance. Our team
mainly focused on reviewing the Code Security and normative, then conducted code running
tests and business logic security tests on the test net, Our team has been in close contact with
the developing team for the past few days. As a result, our team found a total of 7 issues and
plans to address them remaining.

Here are the relevant actors with their respective abilities within the Transit Finance Smart
Contract:

(1) Admin

« Initialize the event of the module.

% aggregator

Admin

H init_module_event ‘H
>

(2) User

« Swap by one type of token pair.

+ Swap by three types of token pairs.
2/16



« Swap by five types of token pairs.

i aggregator

User

swap_one

Y

batch_swap_three

H batch_swap_five H

3 MoveBit Audit BreakDown

Y

Y

MoveBit aims to assess repositories for security-related issues, code quality, and compliance with
specifications and best practices. Possible issues we looked for included (but are not limited to):

« Transaction-ordering dependence

« Timestamp dependence

+ Integer overflow/underflow

« Number of rounding errors

+ Denial of service / logical oversights

+ Access control

+ Centralization of power

+ Business logic contradicting the specification

+ Code clones, functionality duplication

+ Gas usage

+ Arbitrary token minting

« Unchecked CALL Return Values

+ The flow of capability

« Witness Type

4 Methodology

3/16



The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", and that can expand to contexts beyond the
scope according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /
parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

Refer to Appendix 1 for code scope.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.
(4) Audit Process

« Carry out relevant security tests on the testnet or the mainnet;

« If there are any questions during the audit process, communicate with the code owner in
time, and they should actively cooperate (which may include the latest stable source code,
relevant deployment scripts or methods, transaction signature scripts, exchange docking

schemes, etc.);

+ The necessary information during the audit process will be well documented for both the
audit team and the code owner in time.

5 Findings

5.1 The definition of the variable should be placed where
it is used

Severity: Minor

Status: Fixed

Descriptions: The function get_intermediate_out_from_dexs in the aggregator module

defines let amount_in_value = coin::value(&x_in); at the beginning, but the amount_in_va

lue is used only under the dex_type == AUX_DEX condition.

Code Location: tp_contract/aggregator/aptos/aptosAggregatorV1/aggregator.move, line 82.

4/16



~  aggregator.move

fun get_intermediate_out_from_dexs<X, Y, E>(
sender: &signer,

dex_type: ub4,
pool_ type: u64,
is_x_to_y: bool,
x_in: coin::Coin<X>

- ): coin::Coin<Y> {
let amount_in_value = coin::value(&x_in);
let (x_out_opt, y out) = if (dex_type == LIQUIDSWAP_DEX) {

use liquidswap::router_v2;
let y_out =router_v2::swap_exact_coin_for_coin<X, Y, E>(x_in, 0);
(option::none(), y_out)

} else if (dex_type == APTOSWAP_DEX) {

use Aptoswap::pool;

if (is_x_to_y) {
let y out = pool::swap_x_to_y direct<X, Y>(x_in);
(option::none(), y_out)

}

else {
let y_out = pool::swap_y_to x_direct<Y, X>(x_in);
(option::none(), y_out)

}

Suggestion: Move the let amount_in_value = coin::value(&x_in); into the dex_type

X_DEX condition.

5.2 Function visibility issue

Severity: Medium

Status: Fixed

AU

Descriptions: The function of the emit_swap_event in the aggregator module is to emit the

swap event. The visibility is public, anyone can call it and it will cause event resource pollution

and affect the event record.

Code Location: tp_contract/aggregator/aptos/aptosAggregatorV1/aggregator.move, line 47.

5/16



~  aggregator.move

public fun emit_swap_event<X, Y>(
trader:address,
channel:u64,
input_amount:ué4,
output_amount: u64
) acquires EventStore {
let event_store = borrow_global mut<EventStore>(@transit_aggregator);
event::emit_event<SwapEvent>(
&mut event_store.swap_events,
. SwapEvent {
trader,
channel,
x_type_info: type_of<coin::Coin<X>>(),
y_type_info: type_of<coin::Coin<Y>>(),
input_amount,
output_amount,
}J
)s

Suggestion: Change function visibility to private.

5.3 Excessive reliance on external dex contract calls and
there is no way to control or suspend external dex

Severity: Medium

Status: Fixed

Descriptions: The implementation of the swap function in the contract has the problem of over-
reliance on external contracts (multiple external dex contracts are called in the function get_inte
rmediate_out_from_dexs ), and there are no security measures in this contract. If the external
swap contract has a security problem or becomes a malicious contract, the transaction will not
be suspended, resulting in the loss of user benefits.

Code Location: tp_contract/aggregator/aptos/aptosAggregatorV1/aggregator.move, line 75.

6/16



v  aggregator.move

fun get_intermediate_out_from_dexs<X, Y, E>(
sender: &signer,
dex_type: ub4,
pool_type: u64,
is_x_to_y: bool,
Xx_in: coin::Coin<X>
): coin::Coin<Y> {
let amount_in_value = coin::value(&x_in);
let (x_out_opt, y out) = if (dex_type == LIQUIDSWAP_DEX) {
use liquidswap::router_v2;
let y out =router_v2::swap_exact_coin_for_coin<X, Y, E>(x_in, 0);
(option::none(), y_out)
} else if (dex_type == APTOSWAP_DEX) {
use Aptoswap::pool;
if (is_x_to y) {
let y out = pool::swap_x_to_y direct<X, Y>(x_in);
(option::none(), y_out)

}

else {
let y_out = pool::swap_y_to x_direct<Y, X>(x_in);
(option::none(), y_out)

}

} else if (dex_type == PANCAKE_DEX){
use pancake::router;
let y _out = router::swap_exact_x_to_y direct_external<X, Y>(x_in);
(option::none(), y_out)
} else if (dex_type == ANIMESWAP_DEX) {
use SwapDeployer::AnimeSwapPoolV1l;
let y_out =AnimeSwapPoolV1::swap_coins_for_coins<X, Y>(x_in);
(option::none(), y_out)
} else if (dex_type == AUX_DEX) {
if (pool_type == AUX_TYPE_AMM){
use aux::amm;
let y _out = coin::zero<Y>();
amm: :swap_exact_coin_for_coin_mut(
@transit_aggregator,
&mut x_in,
&mut y_out,
amount_in_value,
9,
false,
9,
0
)s

(option::some(x_in),y out)
} else if (pool_type == AUX_TYPE_MARKET){
use aux::clob_market;
let y_out = coin::zero<Y>();
if (is_x_to_y){
clob_market::place_market_order_mut<X, Y>(
@transit_aggregator,

7/16



&mut x_in,

&mut y_out,
false,
102,// IMMEDIATE_OR_CANCEL in aux::router,
9,
amount_in_value,
0
)
= } else {
abort ERR_UNSUPPORTED
}s
(option::some(x_in),y out)
- } else {
abort ERR_UNKNOWN_POOL_TYPE
- }
- } else if (dex_type == CETUS_DEX) {

use cetus_amm::amm_router;
let y_out = amm_router::swap<X, Y>(@transit_aggregator, x_in);
(option::none(),y_out)
- } else {

abort ERR_UNKNOWN_DEX

}s

check_and_deposit_opt(sender, x_out_opt);

y_out

Suggestion: Add safety measures to suspend or remove a DEX from the transit_aggregato
r contract. If any DEX has risks, it can be suspended or removed from the transit_aggregato

r contract.

5.4 Code readability needs to be improved in the
get intermediate out from dexs function

Severity: Medium

Status: Fixed

Descriptions: The code readability of the get_intermediate_out_from_dexs function in the ag
gregator module is poor, the dex swap logic of six different branches can be split into six
functions to improve the readability of the code.

Code Location: tp_contract/aggregator/aptos/aptosAggregatorV1/aggregator.move, line 75-151.

8/16



v  aggregator.move

fun get_intermediate_out_from_dexs<X, Y, E>(
sender: &signer,
dex_type: ub4,
pool_type: u64,
is_x_to_y: bool,
X_in: coin::Coin<X>
): coin::Coin<Y> {
let amount_in_value = coin::value(&x_in);
let (x_out_opt, y out) = if (dex_type == LIQUIDSWAP_DEX) {
use liquidswap::router_v2;
let y out =router_v2::swap_exact_coin_for_coin<X, Y, E>(x_in, 0);
(option::none(), y_out)
} else if (dex_type == APTOSWAP_DEX) {
use Aptoswap::pool;
if (is_x_to y) {
let y out = pool::swap_x_to_y direct<X, Y>(x_in);
(option::none(), y_out)

}

else {
let y_out = pool::swap_y_to x_direct<Y, X>(x_in);
(option::none(), y_out)

}

} else if (dex_type == PANCAKE_DEX){
use pancake::router;
let y _out = router::swap_exact_x_to_y direct_external<X, Y>(x_in);
(option::none(), y_out)
} else if (dex_type == ANIMESWAP_DEX) {
use SwapDeployer::AnimeSwapPoolV1l;
let y_out =AnimeSwapPoolV1::swap_coins_for_coins<X, Y>(x_in);
(option::none(), y_out)
} else if (dex_type == AUX_DEX) {
if (pool_type == AUX_TYPE_AMM){
use aux::amm;
let y _out = coin::zero<Y>();
amm: :swap_exact_coin_for_coin_mut(
@transit_aggregator,
&mut x_in,
&mut y_out,
amount_in_value,
9,
false,
9,
0
)s

(option::some(x_in),y out)
} else if (pool_type == AUX_TYPE_MARKET){
use aux::clob_market;
let y_out = coin::zero<Y>();
if (is_x_to_y){
clob_market::place_market_order_mut<X, Y>(
@transit_aggregator,

9/16



&mut x_in,

&mut y_out,
false,
102,// IMMEDIATE_OR_CANCEL in aux::router,
9,
amount_in_value,
0
)
- } else {
abort ERR_UNSUPPORTED
}s
(option::some(x_in),y out)
N } else {
abort ERR_UNKNOWN_POOL_TYPE
- }
- } else if (dex_type == CETUS_DEX) {

use cetus_amm::amm_router;
let y_out = amm_router::swap<X, Y>(@transit_aggregator, x_in);
(option::none(),y_out)
- } else {

abort ERR_UNKNOWN_DEX

}s

check_and_deposit_opt(sender, x_out_opt);

y_out

Suggestion: The logic at different branches of the function is split into a single function, and the
branch in the function is changed to a call to the function corresponding to the branch.

Modify the code as follows.

10/16



~  aggregator.move

© fun liquid_swap<X, Y, E>(x_in: coin::Coin<X>): coin::Coin<Y> {

}

j fun apto_swap<X, Y>(x_in: coin::Coin<X>): coin::Coin<Y> {

}

fun get_intermediate_out_from_dexs<X, Y, E>(
sender: &signer,
dex_type: ub4,
pool type: u64,
is_x_to_y: bool,
x_in: coin::Coin<X>

; ): coin::Coin<Y> {

- let (x_out_opt, y out) = if (dex_type == LIQUIDSWAP_DEX) {
let y_out = liquid_swap<X, Y, E>(x_in);
(option::none(), y_out)

} else if (dex_type == APTOSWAP_DEX) {
let y_out = apto_swap<X, Y>(is_x_to_y, x_in);
(option::none(), y_out)

5.5 Common code should be encapsulated as a function
to be called

Severity: Medium

Status: Fixed

Descriptions: The batch_swap_five and batch_swap_three functionsin the aggregato
r module have roughly the same code except for the number of type parameters.

Code Location: tp_contract/aggregator/aptos/aptosAggregatorV1/aggregator.move, line 244,
325.

11/16



~  aggregator.move

public entry fun batch_swap_three<

X, OutCoin,
Yo, 70, EO@1, E@2, EO3,
Y1, 71, E11, E12, E13,
Y2, 72, E21, E22, E23,

>(
sender: &signer,
channel: u64,
batch_num: u64,
num_steps_vec: vector<u64>,
first_dex_type_vec: vector<u64>,
first_pool_type vec: vector<u64>,
first_is_x_to_y vec: vector<bool>,
second_dex_type_vec: vector<u64>,
second_pool_type_vec: vector<u64>,
second_is_x_to_y vec: vector<bool>,
third_dex_type_vec: vector<u64>,
third_pool_type_vec: vector<u64>,
third_is_x_to_y vec: vector<bool>,
X_in_vec: vector<u64>,
m_min_out: u64,

) acquires EventStore {

}

public entry fun batch_swap_five<
X, OutCoin,
Yo, Z0, EQ1, EO2, EO3,
Y1, 71, E11, E12, E13,
Y2, 72, E21, E22, E23,
Y3, Z3, E31, E32, E33,
Y4, 74, E4A1, E42, E43,

sender: &signer,
channel: u64,
batch_num: u64,
num_steps_vec: vector<u64>,
first_dex_type_vec: vector<u64>,
first_pool_type_vec: vector<u64>,
first_is_x_to_y vec: vector<bool>,
second_dex_type_vec: vector<u64>,
second_pool_type vec: vector<u64>,
second_is_x_to_y vec: vector<bool>,
third_dex_type_vec: vector<u64>,
third_pool_type_vec: vector<u64>,
third_is_x_to_y vec: vector<bool>,
X_1in_vec: vector<u64>,
m_min_out: u64,

) acquires EventStore {

12/16



Suggestion: Modify the common code as a function, and then call it in two functions. It will
improve code reuse and maintainability.

5.6 The business logic structure is too complex

Severity: Medium

Status: Pending

Descriptions: The batch_swap_five function has twenty-seven type parameters and fifteen
function parameters. It is inconvenient for code maintenance, user command line execution, and

function call, the gas consumption also will be higher.

Code Location: tp_contract/aggregator/aptos/aptosAggregatorV1/aggregator.move, line 325.

~  aggregator.move

public entry fun batch_swap_five<
X, OutCoin,
Yo, Z0, EOQ1, E02, EO3,
Y1, z1, E11, E12, E13,
Y2, Z2, E21, E22, E23,
Y3, Z3, E31, E32, E33,
Y4, Z4, E41, E42, E43,

sender: &signer,
channel: u64,
batch_num: ué4,
num_steps_vec: vector<ué4>,
first_dex_type vec: vector<u64>,
first_pool_type vec: vector<u64>,
first_is_x_to_y vec: vector<bool>,
second_dex_type_vec: vector<u64>,
second_pool_type_vec: vector<u64>,
second_is_x_to_y vec: vector<bool>,
third_dex_type_vec: vector<u64>,
third_pool_type_vec: vector<u64>,
third_is_x_to_y vec: vector<bool>,
X_in_vec: vector<u64>,
m_min_out: u64,

) acquires EventStore {

Suggestion: We suggest that sort out business logic again, and optimizing transaction steps.

5.7 Deploy smart contract without multi-sig

Severity: Medium
Status: Fixed
Descriptions: The smart contract is not deployed under a multi-sig account. Operations

13/16



performed with multiple signatures will provide greater security. Even if the loss of a single
private key will not allow an attacker to gain access to the contract. Multiple trusted parties must

approve the update at the same time, otherwise, it will not work.

Suggestion: Use a multi-sig account for the smart contract when deploying.

Appendix 1 - Files in Scope

The following are the SHA1 hashes of the last reviewed files:

14/16



Files

transit-aptos-core-

v1/contract/sources/aggregator.move

transit-aptos-core-

v1/contract/scripts/swap.move

transit-aptos-core-
v1/contract/exchange/cetus/sources/amm_ro

uter.move

transit-aptos-core-
v1/contract/exchange/animeswap/sources/sw

ap.move

transit-aptos-core-
v1/contract/exchange/aux/sources/clob_mark

et.move

ransit-aptos-core-
v1/contract/exchange/aux/sources/amm.mov

e

transit-aptos-core-
v1/contract/exchange/aptoswap/sources/pool

.move
transit-aptos-core-v1/contract/Move.toml

transit-aptos-core-
v1/contract/exchange/cetus/Move.toml

transit-aptos-core-

v1/contract/exchange/animeswap/Move.toml

transit-aptos-core-

v1/contract/exchange/aux/Move.toml

transit-aptos-core-
v1/contract/exchange/aptoswap/Move.toml

Appendix 2 - Disclaimer

15/16

SHA-1 Hash

1a784615274a5cde4c9484fad4f487606a60a9df

7ca602229116e2f73f92e33fb322ad469388a26d

ce868c3fa23b0f321b2d3d391c3aa00b656b6a8d

49224f7c4ac275088e8ceab68690fe85bda270cc7

234275ca3cc4257f2ef3422b7515df7b034bf32d

bce5e785cae3cdd28aaadeed86f5727086c03a95

2ae35067b4e01efd965caa1509fabf65450058ea

f73ad368d98e8636d9a25840177915fac49b8b6e

4937ffdabe75021bae2c00e502400590514109b2

b783720c75a85ff4877d57e85fad27bfd23571ad

7673e123d70d442a567f39a66f236e3e1db0ad8c

014a96dbe89a9c7ef8863178e99ce630f276857b



This report is based on the scope of materials and documents provided, with a limited review at
the time provided. Results may not be complete and do not include all vulnerabilities. The review
and this report are provided on an as-is, where-is, and as-available basis. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your own risk. A report does not imply an
endorsement of any particular project or team, nor does it guarantee its security. These reports
should not be relied upon in any way by any third party, including for the purpose of making any
decision to buy or sell products, services, or any other assets. TO THE FULLEST EXTENT
PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION
WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS, AND YOUR USE,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

16/16



) MOVEBIT

Securing the Move Ecosystem

https://twitter.com/movebit_

contact@movebit.xyz




